
Continuum Models and Discrete Systems 13 Salt Lake City

On the Realizability of Electric Fields in Conducting Materials

Marc Briane1 Graeme Milton2 Andrejs Treibergs2∗
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4. Conductivity =⇒ Electric Field. Electric Field =⇒ Conductivity?

Let Y = [0, 1]d be the unit cube in Rd and σ ∈ L∞(Rd ,Rd×d) be
symmetric, uniformly elliptic conductivity. Assume σ is Y -periodic:

σ(x + k) = σ(x) for all x ∈ Rd and k ∈ Zd .

For all λ ∈ Rd − {0} there is uλ ∈ H1
loc(R

d), unique up to constant
multiple, such that u(x)− λ • x is Y -periodic and

div(σ∇uλ) = 0 (1)

The effective conductivity of the periodic material is then σ∗ given
by averaging over a cell

σ∗λ = σ∗〈∇uλ〉 = 〈σ∇uλ〉

where ∇uλ is the electric field and J = σ∇uλ is the current field.

We reverse the question: given a periodic electric field ∇u, is it
possible to find a symmetric periodic positive definite conductivity σ
that satisfies the conductivity equation (1)? In other words, which
electric fields are realizable?



5. Isotropic Realizability.

Consider the case that conductivity σ = sI is isotropic.

Theorem (I 1)

Assume that u ∈ C2(Rd) satisfies ∇u 6= 0. Then ∇u is locally
isotropically realizable.

Let x0 ∈ D. Writing σ = ez the conductivity equation div(ez∇u) = 0
becomes a first order PDE for the unknown z(x),

∇u(x) • ∇z = −∆u(x) (2)

The usual method of characteristics gives the solution. Since ∇u is a
characteristic direction, if H is a hypersurface through x0, transverse to
∇u(x0) and z0(h) a function on H, then the solution may be given by
using the PDE to propagate the solution off of H. Let X (t, x) be the
gradient flow of ∇u, satisfying the characteristic ODE for (t, h) ∈ I × G
in some neighborhood G of x0 and some I = (−ε, ε) where ε > 0,

∂
∂t X (t, h) = ∇u

(
X (t, h)

)
, for (t, h) ∈ I × G

X (0, h) = h



6. Solve First Order PDE

Then z satisfies an ODE along the trajectories since

∂

∂t
z
(
X (t, h)

)
= ∇z

(
X (t, h)

)
• ∂

∂t
X (t, h) = −∆u

(
X (t, h)

)
If also the initial condition holds

z(0, h) = z0(h) for h ∈ G ∩H

then the solution is

ζ(t, h) = z0(h)−
∫ t

0
∆u
(
X (τ, h)

)
dτ

Finally, the mapping Ψ : (t, h) 7→ X (t, h) is a local C1 diffeomorphism
from I × (G ∩H) to a neighborhood of x0 since the Jacobian dΨ(0, x0)
is invertible because ∇u(x0) is transverse to H. Writing its inverse
(t, h) = Φ(x), a solution of (2) near x0 is

z(x) = ζ
(
Φ(x)

)
.



7. Global Realizability.

We say that the hypersurface H is a global section for the flow of ∇u if
the trajectory of the gradient flow starting from any point y ∈ Rd meets
H transversally in exactly one point.

Theorem (I 2)

Assume that u ∈ C2(Rd) satisfies ∇u 6= 0 and that ∇u has a global
section H. Then ∇u is isotropically globally realizable.

Note that if ∇u is periodic then z may not be periodic.



8. Example of Globally Realizable Field

Example (1)

Let u(x , y) = x − cos(2πy), and Y = [0, a]× [0, 1], where a > 0.

∇u = e1 + 2π sin(2πy)e2, ∆u = 4π2 cos(2πy).

On the section x = x1 the initial condition is X (0, x) = x and the
gradient flow decouples

∂
∂t X1 = 1
∂
∂t X2 = 2π sin

(
2πX2(t, x)

)
It can be integrated: for x = (x1, x2)

X (t, x) =

(
x1 + t, n +

1

π
arctan

(
e4π2ttan(πx2)

))
, if x2 ∈ (n − 1

2
, n +

1

2
)

X (t, x) =

(
x1 + t, n +

1

2

)
, if x2 = n +

1

2



9. Example of Globally Realizable Field. -

Also

∂

∂t
z = ∇z • ∂

∂t
X = −∆u

(
X (t, x)

)
=

4π2e8π2ttan2(πx2)− 4π2

e8π2ttan2(πx2) + 1

If z vanishes at x1 = 0, this can be integrated to yield

σ = ez =


1 + tan2(πx2)

e4π2x1 + e−4π2x1 tan2(πx2)
, if x2 /∈ 1

2 + Z;

e4π2x1 , if x2 ∈ 1
2 + Z;.

(3)

We see it is not periodic in Y .



10. Example of Globally Realizable Field. - -

Figure: Trajectories of the Gradient Flow for Example 1.



11. Local Isotropic Realizability May Fail for Discontinuous ∇u.

Example (2)

Let the characteristic function of periodic intervals be given by
χ(t) = 1 if 0 ≤ btc ≤ 1

2 (fractional part) and 0 otherwise. Then

u(x , y) = y − x +

∫ x

0
χ(t) dt

is Lipschitz continuous and

∇u = χe2 + (1− χ)(e2 − e1) a.e. in R2,

For this ∇u there is no positive function σ ∈ L∞(R2) such that σ∇u is
divergence free.

∇u has discontinuities on the lines x1 = k/2 for some k ∈ Z. Let
Q = (−r , r)2 for some r ∈ (0, 1

2). If there were positive σ ∈ L∞(Q) such
that σ∇u is divergence free, then there is a stream function v ∈ H1

satisfying ∇v = Rσ∇u, which is unique up to additive constant and is
Lipschitz continuous.



12. Local Isotropic Realizability May Fail for Discontinuous ∇u. -

∇v = Rσ∇u implies

0 = ∇u • ∇v = (e2 − e1) • ∇v in (−r , 0)× (−r , r)

hence v(x , y) = f (x + y) for some Lipschitz function f in [−2r , r ]. On
the other hand

0 = ∇u • ∇v = e2 • ∇v in (0, r)× (−r , r)

Hence v(x , y) = g(x) for some Lipschitz function g in [0, r ].
By continuiuty on the line x1 = 0, f (y) = g(0). Hence f is constant on
[−r , r ] implying v is too. Thus

∇v = 0 a.e. in (−r , 0)× (0, r) and

σ∇u = σ(e2 − e1) 6= 0 a.e. in (−r , 0)× (0, r)

which contradicts the equality∇v = Rσ∇u a.e. Thus ∇u is not
isotropically realizable in neighborhoods near the lines x = k/2,
k ∈ Z.



13. On the Vanishing of Realized Fields

Theorem (I 3)

Let Y ∈ Rd be a closed parallelepiped. Assume that u ∈ C1(Rd) satisfies

∇u is Y -periodic and the cell average 〈∇u〉 6= 0.

∇u is realized as an electric field associated with a smooth periodic
conductivity.

Then

1 if d = 2 then ∇u 6= 0 in all of R2;

2 if d = 3 then there is an example where ∇u(y0) = 0 for some point
y0 ∈ R3.

(1) Follows from a theorem of Allesandrini & Nesi[2001] about solutions
of regular elliptic equations.
(2) One example is given by Ancona[2002], another may be constructed
from the periodic chain mail of Briane, Milton and Nesi[2004].



14.On the Vanishing of Realized Fields -

Theorem (Alessandrini & Nesi (2001))

Let Y ⊂ R2 be a parallelogram, σ ∈ L∞ be uniformly positive definite,
symmetric and Y -periodic. For a symmetric matrix A with det A > 0
consider U ∈ W2,2

loc (ω,R2) such that U − Ax is a Y -periodic and satisfies

Div(σDU) = 0

and the cell average 〈det(DU)〉 > 0. Then

det(DU) > 0 a. e. in R2.

In the isotropic case u is a scalar, 〈∇u〉 6= 0 impies ∇u 6= 0 in R2.



15. Periodic Chain Mail

Figure: Periodic chain mail of Briane, Milton and Nesi consisting of linked
toroidal rings of highly conductive material.



16. Periodic Chain Mail -

Figure: Section of periodic chain mail.

Rings have σ � 1. There is a matrix field such that 〈DU〉 = I ,
〈det(DU)〉 = 1 but det(DU) < 0 in green region.
Hence there is λ ∈ R3 − {0} such that ∇(u • λ) vanishes in R3.



17. Realizability for Periodic Fields.

Theorem (I 4)

Let Y ⊂ Rd be a compact parallelopiped and d ≥ 2. Let u ∈ C3(Rd)
such that ∇u is Y -periodic,

∇u 6= 0 in Rd and the cell average 〈∇u〉 6= 0.

Then ∇u is globally isotropically realizable.

Since ∇u is nonvanishing and periodic, 0 < c1 ≤ |∇u(x)| ≤ c2 for all x
and the function f (t) = u(X (t, x0)) satisfies

f ′(t) = ∇u(X (t, x − 0)) • ∂X

∂t
(t, x0) = |∇u(X (t, x0))|2 ∈

[
c2
1 , c2

2

]
.

Thus
lim

t→∞
f (t) = ∞ and lim

t→−∞
f (t) = −∞

and there is a unique τ(x) ∈ R such that f (τ(x)) = 0. By differentiable
dependence and the implicit function theorem τ ∈ C2(Rd).



18. Realizability for Periodic Fields. -

Hence the level set {x ∈ Rd : τ(x) = 0} is a C1 global section. Put

w(x) =

∫ τ(x)

0
∆u(X (s, x)

)
ds for x ∈ Rd

By the change of variables formula r = s + t,

w
(
X (t, x)

)
=

∫ τ(x)−t

0
∆u(X (s + t, x)

)
ds =

∫ τ(x)

t
∆u(X (r , x)

)
dr

so

∂

∂t
w
(
X (t, x)

)
= ∇w

(
X (t, x)

)
• ∇u

(
X (t, x)

)
= −∆u

(
X (t, x)

)
For the conductivity σ = ew(x) we have at t = 0

div (σ∇(u)) = ew (∇w • ∇v + ∆u) = 0.



19. Conductivity Might Not be Periodic for Smooth Electric Field.

Theorem (I 5. For Example 1, no periodic isotropic σ is possible.)

For u(x , y) = x − cos(2πy), the Y = [0, a]× [0, 1]-periodic electric field
∇u does not admit a continuous non-vanishing Y -periodic isotropic
conductivity σ that makes σ∇u divergence free.

Note ∇u = e1 + 2π sin(2πy)e2. Assume there is a Y -periodic function σ
such that σ∇u is divergence free. Let Q = [0, a]× [−r , r ] for some
0 < r < 1

2 . Then, using Green’s Theorem,

0 =

∫
Q

div(σ∇u) dx dy =

∮
∂Q

(σux) dy − (σuy ) dx

=

∫ r

−r

[
σ(a, y)ux(a, y)− σ(0, y)ux(0, y)

]
dy

+

∫ a

0

[
σ(x , r)uy (x , r)− σ(x ,−r)uy (x ,−r)

]
dx

= 0 + 2π sin(2πr)

∫ a

0

[
σ(x , r) + σ(x ,−r)

]
dx > 0



20. Isotropic Realizability on the Torus.

Theorem (I 6.)

Let Y ⊂ Rd be a compact parallelopiped and d ≥ 2. Let u ∈ C3(Rd)
such that ∇u is Y -periodic, ∇u 6= 0 in Rd and the cell average
〈∇u〉 6= 0. Assume that there is C < ∞ such that for all x ∈ Rd ,∣∣∣∣∣

∫ τ(x)

0
∆u
(
X (t, x)

)
dt

∣∣∣∣∣ ≤ C (4)

where τ(x) is the unique time such that u(τ(x), x) = 0 as in the proof of
Theorem I 4. Then ∇u is isotropically realizable with Y -periodic
conductivity σ, σ−1 ∈ L∞Y (Rd).

Conversely, if ∇u is isotropically realizable with Y -periodic conductivity
σ ∈ C1

Y (Rd), then (4) holds.



21. Example 1 Does Not Satisfy the Condition.

Example (1, cont. Assumptions of Theorem I 6 do not hold.)

Let u(x , y) = x − cos(2πy), and Y = [0, a]× [0, 1], where a > 0.

∇u =
(
1, 2π sin(2πx2)

)
∆u = 4π2 cos(2πx2)

Put p0 = (x1, 0). Thus, X (t, p0) = (x1 + t, 0) so

w(p0) =

∫ τ(p0)

0
∆u
(
X (t, p0)

)
dt = 4π2 cos(0)τ(p0).

But by the definition of τ ,

0 = u
(
X (τ(p0), p0)

)
= x1 + τ(p0)− cos(0)

so that
w(p0) = 4π2(1− x1)

which is not bounded.



22. Proof of Theorem I 6 (Necessity).

Assume there is a positive periodic σ = ew ∈ C1
Y (Rd) such that

div(σ∇u) = 0. Then ∇u • ∇w + ∆u = 0 in Rd . Hence∫ τ(x)

0
∆u
(
X (t, x)

)
dt = −

∫ τ(x)

0
∇w

(
X (t, x)

)
• ∇u

(
X (t, x)

)
dt

= −
∫ τ(x)

0
∇w

(
X (t, x)

)
• ∂

∂t
X (t, x) dt

= w
(
X (0, x)

)
− w

(
X (τ(x), x)

)
= x − w

(
X (τ(x), x)

)
which is bounded by assumption. Hence (4) follows.



23. Proof of Theorem I 6 (Sufficiency).

For simplicity, assume Y = [0, 1]d . For x ∈ Rd define

σ0(x) = exp

(∫ τ(x)

0
∆u
(
X (t, x)

)
dt

)

and for n ∈ N, average over the (2n + 1)d integer vectors in [−n, n]d

σn(x) =
1

(2n + 1)d

∑
k∈Zd∩[−n,n]d

σ0(x + k)

By (4), σn is bounded in L∞(Rd). Hence a subsequence σn′ converges
weak-∗ to σ∞ in L∞(Rd).



24. Proof of Theorem I 6 (Sufficiency) -

For any k ∈ Zd∣∣∣(2n + 1)dσn(x + k)− (2n + 1)dσn(x)
∣∣∣

=

∣∣∣∣ ∑
|j−k|∞≤n

σn(x + j)−
∑
|j |∞≤n

σn(x + j)

∣∣∣∣
≤

∑
|j|∞≤n+|k|∞

|j|∞>n

σn(x + k) +
∑

|j−k|∞≤n+|k|∞
|j−k|∞>n

σn(x + k)

≤ 2eC
(
(2n + 2k + 1)d − (2n + 1)d

)
≤ C2(C , d , k)nd−1

Letting n′ →∞ implies that σ∞(x + k) = σ∞(x) a.e. in Rd and for any
k. Thus σ∞ ∈ L∞Y (Rd). Since σ0 is bounded below by e−C ,
σ−1
∞ ∈ L∞Y (Rd).



25. Proof of Theorem I 6 (Sufficiency) - -

As ∇u ∈ C2
Y (Rd), it is realized by the conductivity σ0. Periodicity implies

that also div(σn∇u) = 0 in Rd . From weak-∗ convegence, for every
ϕ ∈ C∞c (Rd) we have

0 = lim
n′→∞

∫
Rd

σn′∇u • ∇ϕ dx =

∫
Rd

σ∞∇u • ∇ϕ dx

Hence div(σ∞∇u) = 0 in D′(Rd) so that ∇u is isotropically realized by
the Y -periodic conductivity σ∞.



26. Anisotropic Realizability.

Theorem (A 1)

Let Y ⊂ R2 be a closed parallelogram. Let u ∈ C1(R2) such that ∇u 6= 0
is Y -periodic in R2 and the cell average 〈∇u〉 6= 0. Then necessary and
sufficient that ∇u be realizable by a continuous, Y -periodic, symmetric
positive definite matrix-valued conductivity σ is that there is a functiom
v ∈ C1(R2) such that ∇v is Y -periodic in R2 and the cell average
〈∇v〉 6= 0 such that

R∇u • ∇v = det(∇u,∇v) > 0 everywhere in R2. (5)

where R is rotation by a right angle.

Theorem A 1 continues to hold under the weaker assumptions that ∇u is
Y -periodic, ∇u ∈ L2(Y ), ∇u 6= 0 a.e. in R2 and 〈∇u〉 6= 0. In this case,
the Y -periodic conductivity σ defined only a.e. by the formula below and
does not remain bounded in Y . However σ∇u is divergence free in the
sense of distributions.



27. Anisotropic Realizability. -

Assume there is such v . (5) says that ∇v is nonvanishing. Then define

σ =
1

|∇u|4

(
∂u
∂x1

∂u
∂x2

− ∂u
∂x2

∂u
∂x1

)T (
R∇u • ∇v −∇u • ∇v

−∇u • ∇v |∇u•∇v |2+1
R∇u•∇v

)(
∂u
∂x1

∂u
∂x2

− ∂u
∂x2

∂u
∂x1

)

which is a continuous, symmetric positive definite matrix function.
σ∇u = −R∇v in R2 so it is divergence free.
Now assume there is u and a continuous positive definite symmetric σ.
Let v ∈ C1(R2) be the stream function which satisfies ∇v = −R∇u.
Hence ∇v is Y -periodic and

R∇u • ∇v = −∇u • R∇v = σ∇u • ∇u

Allesandrini & Nesi’s result implies ∇u is nonvanishing, which
implies (5). By the div-curl lemma,

〈R∇u • ∇v〉 = R〈∇u〉 • 〈∇v〉 = 〈σ∇u • ∇u〉 > 0

so 〈∇v〉 > 0 also.



28. Example 1 via Anisotropic Realizability.

Example (1)

Let u(x , y) = x − cos(2πy), and Y = [0, a]× [0, 1], where a > 0. Then
∇u is anisotropically realizble.

∇u = e1 + 2π sin(2πx2)e2. Take

v(x) = x2

We find
R∇u • v = (−2π sin(2πx2)e1 + e2) • e2 = 1

so Theorem A 1 applies: for δ = 1 + 4π2 sin2(2πx2), let

σ =
1

δ2

(
δ2 + δ − 1 −2π sin(2πx2)

−2π sin(2πx2) 1

)
Now σ∇u = e1 which is divergence free.



29. Example 2 via Anisotropic Realizability.

Example (2)

u(x) = x2− x1 +
∫ x1

0 χ(t) dt where χ = 1 if 0 ≤ btc ≤ 1
2 and 0 otherwise.

Then ∇u is anisotropically realizable.

∇u = χe2 + (1− χ)(e2 − e1) a.e. in R2 satisfies the weaker
assumptions. For a.e. x ∈ R2, define

v(x) = −x2 −
∫ x1

0 χ(t) dt, ∇v = −χ(e1 + e2)− (1− χ)e2

so that a.e. in R2, −∇u • ∇v = R∇u • ∇v = 1.
Then formula (5) yields the rank one laminate conductivity a.e. in R2,

σ = χ

(
2 −1
−1 1

)
+

1− χ

4

(
5 1
1 1

)
Hence a.e. in R2, σ∇u = χ(−e1 + e2) + (1− χ)e2 which is divergence
free in D′(R2) .



30. Matrix Field Realizability

Let d ≥ 2 and Ω ⊂ Rd be open. If U ∈ H1(Ω,Rd) then the matrix
electric field DU is said to be realizable if there is a symmetric positive
definite matrix-valued function σ ∈ L∞loc(Ω,Rd×d) such that

Div(σDU) = 0

Theorem (M 1)

Let d ≥ 2 and Y ⊂ Rd be a closed parallelopiped. Let U ∈ C1(Rd ,Rd)
such that DU is Y -periodic.

1 Assume also det(〈DU〉DU) > 0 in Rd and det (〈DU〉) 6= 0. Then
DU is a realizable matrix electric field with continuous conductivity.

2 If d = 2, det (〈DU〉) 6= 0 and the matrix electric field realized by a
C1 conductivity, then det(〈DU〉DU) > 0.

3 If d = 3 there exists a smooth Y -periodic matrix field DU such that
det (〈DU〉) 6= 0 and an associated smooth periodic conductivity σ
such that det (DU) takes both positive and negative values in R3.



31. Matrix Field Realizability. -

(i.) For Y -periodic U ∈ C1 such that det(〈DU〉DU) 6= 0 we define

σ = det
(
〈DU〉DU

)
(DU−1)T DU−1 = det

(
〈DU〉

)
Cof(DU) DU−1

where Cof is the cofactor matrix. σ is Y -periodic, continuous, symmetric
and positive definite. Also by Piola’s identity, as a distribution,

Div(Cof DU) = 1 in D′(Rd)

Hence σDU is divergence free and DU is realizable with associated
conductivity σ.

(ii.) Follows from a theorem of Alessandrini and Nesi.
(iii.) Example is constructed from periodic chain mail constructed by
Briane, Milton and Nesi.



32. Matrix Field Realizability

The result (i.) may be generalized:

Corollary (M 2)

Let d ≥ 2 and Y ⊂ R2 be a closed parallelopiped. Let U ∈ C1(Rd ,Rd)
with Y -periodic DU, det(〈DU〉DU) > 0 in Rd and det (〈DU〉) 6= 0.
Then the matrix electric field DU is realized by a family of continuous
conductivities σϕ parameterized by convex functions ϕ ∈ C2(Rd), those
whose Hessian matrices D2ϕ are positive definite everywhere in Rd .

Define
σϕ = det

(
〈DU〉

)
Cof(D(∇ϕ ◦ U) DU−1

σϕDU is divergence free by Piola’s identity. We also have

Cof(D(∇ϕ ◦ U)) = Cof(DU D2ϕ ◦ U) = Cof(DU) Cof(D2ϕ ◦ U)

so that σϕ satisfies

σϕ = det
(
〈DU〉DU

)
(DU−1)T Cof(D2ϕ ◦ U) DU−1

Since D2ϕ is symmetric positive definite, so is its cofactor matrix. Thus
σϕ is an admissible, continuous with σϕDU divergence free in Rd .



33. Laminate Realizability

Figure: A rank-two laminate with directions ξ1 = e1 and ξ1,2 = e2.

Let d , n ∈ N. A rank-n laminate in Rd is a multiscale microstructure
defined at n ordered scales εn � · · · � ε1 depending on a small positive
parameter ε → 0 and in multiple directions in Rd\{0}, by the following
process.



34. Laminate Realizability

At the smallest scale εn there is a set of mn rank-one laminates, the
ith one of which, for i = 1, . . . ,mn, is composed of an εn periodic
repetition in the ξi ,n direction of homogeneous layers with constant
positive definite conductivity matrices σh

i ,n, h ∈ Ii ,n.

At the scale εk there is a set of mk laminates, the ith one of which,
for i = 1, . . . ,mk , is composed of an εk -periodic repetition in the
ξi ,k ∈ Rd\{0} direction of homogeneous layers and/or a slection of
the mk+1 laminates which are obtained at stage k + 1 with constant
positive definite conductivity matrices σh

i ,k and/or σh
i ,j , resp., for

j = k + 1, . . . , n, h ∈ Ii ,j .

At the scale ε1 there is a single laminate (m1 = 1) which is
composed of an ε1-periodic repetition in the ξ1 ∈ Rd\{0} direction
of homogeneous layers and/or a selection of the m2 laminates which
are obtained at scale ε2 with constant positive definite conductivity
matrices σh

i ,1 and/or σh
i ,j , resp., for j = 2, . . . , n, h ∈ Ii ,j .

The laminate conductivity at stage k = 1, . . . , n is denoted by Lε
k(σ̂)

where σ̂ is the whole set of constant laminate conductivities.



35. Laminate Realizability

Briane and Milton showed that there is a set P̂ of constant d × d
matrices such that Pε = Lε

n(P̂) is a corrector (or a matrix electric field)
associated to the conductivity σε = Lε

n(σ̂) in the sense of Murat-Tartar:
Pε ⇀ I weakly in L2

loc(R
d ,Rd×d),

Curl(Pε) → 0 strongly in H−1
loc(R

d ,Rd×d),

Div(σεPε) is compact in H−1
loc(R

d ,Rd).

(6)

The weak limit of σεPε in L2
loc(R

d ,Rd×d) is then the homogenized
limiting conductivity of the laminate. The three conditions (6) satisfied
by Pε extend in the laminate case to the three respective conditions

〈DU〉 = I ,

Curl(DU) = 0,

Div(σDU) = 0.

(7)

satisfied by any electric field DU in the periodic case.



36. Laminate Field Realizability

Theorem (L 1)

Let d , n ∈ N. Consider the rank-n laminate multiscale field Lε
n(P̂) built

from a finite set P̂ of d × d matrices satisfying

Pε ⇀ I weakly in L2
loc(R

d ,Rd×d),

Curl(Pε) → 0 strongly in H−1
loc(R

d ,Rd×d),
(8)

Then necessary and sufficient that the field be realized, i.e., Div(σεPε) is
compact in H−1

loc(R
d ,Rd) for some rank-n laminate conductivity Lε

k(σ̂) is

that det
(
Lε

k(P̂)
)

> 0 a.e. in Rd , or equivalently, that the determinant of

each matrix in P̂ is positive.

Determinant positivity follows from a theorem of Briane, Milton and Nesi.
Conversely, suppose there is a laminate field Pε = Lε

n(p̂) satisfying (8)
and det(Pε) > 0 a.e.

Pf. Torus



37. Laminate Field Realizability. -

As in the matrix field case consider the rank-n conductivity defined by

σε = det(Pε) (P−1
ε )T P−1

ε = Lε
n(σ̂),

where σ̂ = {det(P) (P−1)T P−1 : P ∈ P̂}. Then compactness is
equivalent to the compactness of

Div(Cof(Pε)).

Contrary to the periodic case, Cof(Pε) is not divergence free as a
distribution. But using the homogenization procedure for laminates of
Briane, by the quasi-affinity of cofactors for gradients compactness holds
if the matrices P and Q of two neighboring layers in a direction ξ of the
laminate satisfy the jump condition for the divergence(

Cof(P)− Cof(Q)
)T

ξ = 0. (9)



38. Laminate Field Realizability. - -

More precisely, at the given scale εk of the laminate the matrix P or Q is
either a matrix in P̂ or the average of rank-one laminates obtained at the
smallest scales εk+1, . . . , εn

In the first case the matrix P is the constant value of the field in a
homogeneous layer of the rank-n laminate.

In the second case, the average of the cofactors of the matrices involved
in those rank one laminations is equal to the cofactors matrix of the
average, Cof(P), by virtue of the quasi-affinity of the cofactors applied
iteratively to the rank-one connected matrices in the rank-one laminate.

Therefore, it remains to prove (9) for any matrices P and Q with positive
determinant satisfying the condition that controls the jumps in the
convergence of Curl(Pε) → 0 in (8).



39. Laminate Field Realizability. - - -

For any matrices P and Q with positive determinant satisfying the
condition we must show

P − Q = ξ ⊗ η, for some η ∈ Rd .

So by multiplicativity of cofactor matrices we have(
Cof(P)− Cof(Q)

)T
ξ = Cof(Q)T

[
Cof
(
I + (ξ ⊗ η)Q−1

)T − I
]

= Cof(Q)T
[
Cof(I + ξ ⊗ λ)T − I

]
where λ = (Q−1)Tη. Moreover if ξ • η 6= −1 we have

Cof(I + ξ ⊗ λ)T = det(I + ξ ⊗ λ) (I + ξ ⊗ λ)−1 = (I + ξ • λ)I − ξ ⊗ λ,

which extends to the case ξ • η = −1 by continuity. Hence(
Cof(P)− Cof(Q)

)T
= Cof(Q)

(
(ξ • λ)I − ξ ⊗ λ

)
,

which implies (9) since (ξ ⊗ λ)ξ = (ξ • λ)ξ.



Thanks!




